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This paper focuses on flux-continuous pressure equation approximation for strongly aniso-
tropic media. Previous work on families of flux-continuous schemes for solving the general
geometry–permeability tensor pressure equation has focused on single-parameter families.
These schemes have been shown to remove the O(1) errors introduced by standard two-point
flux reservoir simulation schemes when applied to full-tensor flow approximation. Improved
convergence of the schemes has also been established for specific quadrature points. How-
ever these schemes have conditional M-matrices depending on the strength of the off-diag-
onal tensor coefficients. When applied to cases involving full-tensors arising from strongly
anisotropic media, the point-wise continuous schemes can fail to satisfy the maximum
principle and induce severe spurious oscillations in the numerical pressure solution.

New double-family flux-continuous locally conservative schemes are presented for the
general geometry–permeability tensor pressure equation. The new double-family formula-
tion is shown to expand on the current single-parameter range of existing conditional
M-matrix schemes. The conditional M-matrix bounds on a double-family formulation are
identified for both quadrilateral and triangle cell grids. A quasi-positive QM-matrix analysis
is presented that classifies the behaviour of the new schemes with respect to double-family
quadrature in regions beyond the M-matrix bounds. The extension to double-family quad-
rature is shown to be beneficial, resulting in novel optimal anisotropic quadrature schemes.
The new methods are applied to strongly anisotropic full-tensor field problems and yield
results with sharp resolution, with only minor or practically zero spurious oscillations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

This paper presents the development of new double-families of flux-continuous finite-volume methods for the pressure
equation resulting from Darcy’s law and mass conservation. Key physical constraints of continuity in normal flux and full-
pressure continuity are imposed at control-volume interfaces.

The derivation of algebraic flux continuity conditions for full-tensor discretization operators has lead to families of effi-
cient locally conservative pointwise flux-continuous control-volume distributed (CVD) finite-volume schemes for determin-
ing the discrete pressure and velocity fields [1–5]. These schemes are constructed using linear triangular pressure support
(TPS) inside each subcell for both quadrilateral and triangle grids, and are classified by the quadrature parameterization
0 < q 6 1. Schemes of this type are also called multi-point flux approximation schemes or MPFA [6] where focus has been
on a scheme that is the default member of the above mentioned family with q ¼ 1. Further schemes of this type are pre-
sented in [7,8] and via a novel mixed method [9]. Other schemes that preserve flux continuity have been developed from
. All rights reserved.
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variational frameworks, using the mixed finite element method e.g. [10–15] and related work [16] and discontinuous galer-
kin methods [17,18], however these schemes require additional degrees of freedom.

When applying the flux-continuous schemes to the elliptic pressure equation with a strongly anisotropic full-tensor field
they can fail to satisfy the maximum principle (as with other finite element and finite-volume methods) and result in spu-
rious oscillations in the numerical pressure solution. M-matrix conditions were first derived in [19,1], monotone matrix con-
ditions are presented in [20]. Grid optimization techniques have been proposed for improving stability of the discrete system
for variable anisotropy [21]. Discretization schemes that help to improve stability for high anisotropy are presented in
[4,22,23]. Non-linear methods have also been proposed, [24,25] (flux-splitting) and [26,27] (positivity preserving), both of
which have been shown to yield numerical pressure solutions that are free of spurious oscillations.

In this paper new families of flux-continuous, locally conservative, finite-volume schemes are presented for solving the
general-tensor pressure equation. The new schemes have full-pressure continuity imposed across control-volume faces, in
contrast to the earlier families of flux-continuous schemes with pointwise continuity in pressure and flux. This work extends
the single-parameter family of [22] to double-families of schemes on quadrilateral and triangular cell grids with general flex-
ibility in quadrature that allow different quadrature points to be used on different control-volume subfaces.

For strongly anisotropic full-tensor cases where M-matrix conditions are violated, the earlier pointwise continuous fam-
ilies of schemes cannot avoid decoupling of the solution which leads to severe spurious oscillations in the discrete solution
[22]. The new schemes minimiSe spurious oscillations in discrete pressure solutions. The new formulation leads to more ro-
bust quasi-positive families of flux-continuous schemes applicable to general discontinuous full-tensor fields. Particular fo-
cus is on two types of the many possible schemes within the formulation. The first involves identifying a family of optimal
support schemes according to anisotropy, while the second involves extreme anisotropic quadrature schemes.

This paper is organized as follows: Section 2 gives a description of the single phase flow problem encountered in reservoir
simulation with respect to the general-tensor pressure equation. Two-phase flow is also considered in the results section.
The double-family of Full-Pressure Support (FPS) schemes is introduced in Section 3 for quadrilateral and triangular cell-ver-
tex schemes. The relationship between FPS and control-volume finite element (CVFE) double-families is given in Section 4.
Positivity is defined and double-family M-matrix conditions for quadrilateral schemes are derived in Section 5. Optimal and
anisotropic quadrature schemes are introduced in Section 6, together with extreme anisotropic quadrature rules. Decoupled
approximation, important consequences and implications for monotone schemes are presented in Section 7. Triangular grid
M-matrix conditions are given in Section 8. Quasi-positive QM-matrices are defined in Section 9, where the double-family
schemes are classified when M-matrix limits are exceeded. The cell-vertex FPS triangular grid formulation also leads to opti-
mal schemes when anisotropy angle favoring triangulation is employed. Results for the new FPS schemes are presented in
Section 10. Comparisons between the earlier TPS pointwise flux-continuous CVD(MPFA) schemes and new FPS schemes
clearly demonstrate the benefits of the new schemes, both in terms of significantly reducing spurious oscillations and
improving solution resolution. Conclusions follow in Section 11.

2. Flow equation and problem description

The analytical pressure equation is formulated in a general curvilinear coordinate system that is defined with respect to a
uniform dimensionless transform space with a ðn;gÞ coordinate system. (Neumann/Dirichlet) boundary conditions on
boundary @X. Choosing X to represent an arbitrary control-volume comprised of surfaces that are tangential to constant
ðn;gÞ respectively, where @X is the boundary of X and n̂ is the unit outward normal. Spatial derivatives are expressed as
/x ¼ Jð/; yÞ=Jðx; yÞ;/y ¼ Jðx;/Þ=Jðx; yÞwhere Jðx; yÞ ¼ xnyg � xgyn is the Jacobian. Resolving the x,y components of Darcy veloc-
ity V ¼ �Kr/ along the unit normals to the curvilinear coordinates ðn;gÞ, e.g., normal to n ¼ constant, n̂ds ¼ ðyg;�xgÞdg
gives rise to the general-tensor Darcy-flux components
F ¼ �
Z
ðT11/n þ T12/gÞdg;G ¼ �

Z
ðT12/n þ T22/gÞdn; ð1Þ
where general tensor T ¼ jJjJ�1KJ�T elements are given by
T11 ¼ K11y2
g þ K22x2

g � 2K12xgyg

� �
=J;

T22 ¼ K11y2
n þ K22x2

n � 2K12xnyn

� �
=J;

T12 ¼ ðK12ðxnyg þ xgynÞ � ðK11ygyn þ K22xgxnÞÞ=J ð2Þ
and result from the Piola transformation. Matrix K is a diagonal or full elliptic cartesian tensor. The closed integral can be
written as
Z Z

X

ð@n
eF þ @g

eGÞ
J

Jdndg ¼ MnF þ MgG ¼ M ð3Þ
where MnF, MgG are the differences in net flux with respect to n and g respectively, eF ¼ T11/n þ T12/g, and eG ¼ T12/n þ T22/g.
M represents a specified flow rate. Ellipticity of T follows from that of K. full-tensors can arise from upscaling, unstructured
grids and local orientation of the grid and permeability field.
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3. Double-families of flux-continuous schemes with full-pressure support

Here we extend the single-parameter method of [22] to double-families of schemes which have continuous pressure sup-
port over the entirety of each control-volume subface. The double-families of schemes allow different quadrature points to
be used on different control-volume subfaces leading to anisotropic quadrature schemes that prove to be beneficial for
anisotropic problems.

Cell-vertex and cell-centred formulations are developed. In this section we present the cell-vertex quadrilateral grid for-
mulation. The support and numbering for the cell-vertex scheme are shown in Fig. 1. A dual grid of polygonal control-vol-
umes is constructed from the primal grid by joining primal grid cell-centres to cell-edge mid-points, so that each interior
vertex is placed inside a control-volume Fig. 1(b). Discrete flow and rock variables are assigned to the grid vertices and per-
meability has a piecewise constant variation over the dual grid of control-volumes, Fig. 1(c). Introduction of the dual grid of
control-volumes (dashed) partitions each primal grid cell into four sub-quadrilateral cells (subcells). Each subcell of a primal
cell is therefore attached to a unique vertex and is also a subcell of the corresponding vertex control-volume. The subcell
faces that lie inside a primal cell are thus subfaces of the corresponding vertex control-volumes and are interfaces across
which permeability may jump in variation. Consequently the physical constraints of continuity in pressure and normal flux
must be imposed across the resulting subfaces. This is achieved cell-wise, four local flux continuity conditions (together with
pressure continuity) are imposed over the four interior subfaces between subcells in each primal cell to handle jumps in per-
meability between adjacent control-volumes. A further zero divergence constraint is also imposed in each primal cell to close
the full pressure continuity system. The subface fluxes are then assembled over the vertex control-volumes to form the pri-
mal discrete approximation of Eq. (3), details are given below.
3.1. Double-families of full-pressure continuity schemes - quadrature parameterization

In this primal cell-vertex formulation, the continuity conditions are imposed locally in a cell-wise formulation. The lower-
case indices ðn; s; e;wÞ indicate the mid-points of the edges of a primal cell. The mid-points are connected to the primal cell
centre m, forming the four interior subcell faces, or subfaces Fig. 2(a) where subfaces are indicated with dashed lines. Con-
tinuous interface pressures are introduced at the indicated fixed positions ðn; s; e;wÞ in Fig. 2(a). Full subcell face pressure
continuity is achieved by introduction of a further continuous interface pressure at the common corner m of the four subcells
(i.e. at the primal cell centre) indicated in Figs. 1, and 2. The set of local interface pressures to be determined over the primal
cell are thus defined by Uf ¼ ð/n;/s;/e;/w;/mÞ

T . The interface pressures are determined in terms of the four cell-vertex pres-
sures in a pre-processing step, by four local flux continuity conditions (one per subface) and a zero divergence condition im-
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Fig. 1. (a) Numbering of scheme support nodes (stencil), (b) nine-node support, control-volume i; j dashed, with primal cell iþ 1=2; jþ 1=2 with local nodes
1–4, and (c) control-volumes with different rock properties shaded.
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Fig. 2. (a) Primal cell nodes 1–4, interface nodes n; s; e;w;m, control-volume subfaces dashed, (b) double-family primary fluxes N; S; E;W in a cell (solid
arrows), (c) auxiliary control-volumes (dot-dashed lines), and (d) auxiliary fluxes in a cell (hollow arrows).
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posed over an auxiliary control-volume surrounding m inside the primal cell. Primary cell-vertex control-volume divergence
is then obtained by cell-wise assembly of the resulting fluxes with respect to the primal vertex control-volumes.

A subcell bilinear approximation of pressure and position vector is introduced locally over each subcell with local (master
element) parametric coordinates ð0 6 ~n; ~g 6 1Þ Fig. 3(a), where for example over subcell ð1; s;m;wÞ pressure and position
vector are defined by
/ ¼ ð1� ~nÞð1� ~gÞ/1 þ ~nð1� ~gÞ/s þ ~n~g/m þ ð1� ~nÞ~g/w ð4Þ
r ¼ ð1� ~nÞð1� ~gÞr1 þ ~nð1� ~gÞrs þ ~n~grm þ ð1� ~nÞ~grw ð5Þ
The approximation leads to full-pressure support (FPS) over each subcell, in contrast to earlier triangle pressure support
(TPS) schemes with pointwise interface pressure continuity. Consequently FPS has a conforming linear variation in pressure
over each subcell face in a primal grid cell, which is shared by adjacent subcells with common subfaces, thus full-pressure
continuity across interfaces follows by construction. The linear interface pressure variation permits a degree of freedom in
position of flux continuity on each subface, leading to new families of flux-continuous schemes with full-pressure support.
As a result of using bilinear basis functions the fluxes are consequently exact for any piecewise linear or bilinear pressure
field provided the Darcy flux is continuous and consistently resolved in physical space as follows. Approximate derivatives
are derived from the bilinear map over each subcell. For example over subcell 1 Fig. 2(a) with corners labeled anti-clockwise
ð1; s;m;wÞ, we obtain
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Fig. 3. Quadrature parameterization in a cell: (a) FPS ð~n; ~gÞ and CVFE ðn;gÞ, and (b) TPS ðp; qÞ.
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/~n ¼ ð1� ~gÞð/s � /1Þ þ ~gð/m � /wÞ
/~g ¼ ð1� ~nÞð/w � /1Þ þ ~nð/m � /sÞ ð6Þ
with an analogous approximation for position vector derivatives.
r~n ¼ ð1� ~gÞðrs � r1Þ þ ~gðrm � rwÞ
r~g ¼ ð1� ~nÞðrw � r1Þ þ ~nðrm � rsÞ ð7Þ
Using Eqs. (6), (7) the discrete Darcy velocity at S is defined as
vh ¼ �K1r/h ¼ �K1Gð~gÞ
/~n

/~g

 !
ð8Þ
where K1 is the local permeability tensor of vertex 1 and dependency of r/h on quadrature point arises through
r/h ¼ Gð~gÞ
/~n

/~g

 !
¼

y~g �y~n

�x~g x~n

 !
1

Jðx; yÞ
/~n

/~g

 !
ð9Þ
Approximate r~n and r~g are defined by Eq. (7) and Jðx; yÞ ¼ x~ny~g � x~gy~n over a subcell. The discrete normal Darcy flux at the left
hand side of S Fig. 2(b), is then resolved along the outward normal vector dLS ¼ ððym � ysÞ;�ðxm � xsÞÞ and is expressed in
terms of the resulting discrete general tensor T ¼ Tð~n; ~gÞ as
F1
S ¼ vh � dLS ¼ �ðT1

11/~n þ T1
12/~gÞj

1
S ð10Þ
where it is understood that the coefficients of �ð/~n;/~gÞj
1
S denoted by T11j1S and T12j2S are subcell (physical space) approxima-

tions of the general-tensor components (Eq. (10)) at the left hand face at S, which result from normal flux resolution. A sim-
ilar expression for flux is obtained at the right-hand side of S from subcell 2 Fig. 2(b). The south flux is a function of ~g.
Similarly subcell fluxes are resolved on the two sides of the other subfaces at E;W and N. Flux continuity is then imposed
across the four cell interfaces at the four positions N; S; E;W Fig. 2(b) which are specified by chosen quadrature points.
The E;W fluxes are defined with respect to ~n and N; S fluxes are defined with respect to ~g.

Thus upper-case N; S; E;W define the primary flux positions of the family of schemes on the control-volume subfaces
Fig. 2(b), where the fluxes have solid arrows. The actual interface pressures ð/n;/s;/e;/wÞ remain attached to the mid-points
of the faces of the primal grid cell and m is fixed at the primal cell centre. The complete vector of interface pressures
Uf ¼ ð/n;/s;/e;/w;/mÞ

T are expressed in terms of the primal pressure degrees of freedom Uv ¼ ð/1;/2;/3;/4Þ
T at the ver-

tices of the primal cell prior to the solution step, by imposing flux continuity across the four subcell faces inside the cell,
together with a local zero divergence condition for /m.

The primal cell divergence approximation is introduced over an auxiliary control-volume surrounding the cell centre. The
location of the auxiliary control-volume is another parameter to be specified, e.g. any of the indicated dot-dashed lines in
Fig. 2(c) and (d). The four flux continuity conditions together with the zero divergence condition lead to the local algebraic
system
FN ¼ �ðT11/~n þ T12/~gÞj
3
N ¼ �ðT11/~n þ T12/~gÞj

4
N;

FS ¼ �ðT11/~n þ T12/~gÞj
1
S ¼ �ðT11/~n þ T12/~gÞj

2
S ;

FE ¼ �ðT12/~n þ T22/~gÞj
2
E ¼ �ðT12/~n þ T22/~gÞj

3
E ;

FW ¼ �ðT12/~n þ T22/~gÞj
1
W ¼ �ðT12/~n þ T22/~gÞj

4
W ;

�
P
@XAUX

ðKr/Þ � n̂Ds ¼ 0

ð11Þ
which is linear in Uf and Uv . The double-family of schemes is defined by the positions of flux continuity parameterized by
the local basis function ~n; ~g, with respect to pairs of subcell faces. The double-parameter family is distinguished from a sin-
gle-parameter family by allowing quadrature points that are not necessarily equal along adjoining subcell faces so that ~n–~g.
This will lead to anisotropic quadratures defined later.

To clarify notation, for example FS will denote the continuous flux at a quadrature point that may either coincide with s or
be between s and m, but never coincides with m, i.e. 0 6 ~g < 1. Following a standard finite-volume procedure, the flux is
added to the control-volume with local number 1 and subtracted from adjacent control-volume 2 in the cell-wise assembly
process. Local conservation follows immediately since the net sum of flux leaving and entering the two control-volumes
sharing the common subface is zero. Similarly FW denotes the flux at a quadrature point between w and m, but never coin-
cides with m, i.e. 0 6 ~n < 1. This flux is added to control-volume 1 and subtracted from adjacent control-volume 4. Thus local
conservation is strictly enforced on a subface basis for any quadrature point, which applies to any grid type.

However, one of the distinguishing features of this finite-volume scheme is the local imposition of in-built flux continuity
across interfaces separating medium variation for general anisotropic quadrature. Here we illustrate discrete flux continuity
for the second and fourth equations of Eq. (11), which are defined by different values of ~n and ~g respectively. The second
equation is defined at a point S between s and m with



M.G. Edwards, H. Zheng / Journal of Computational Physics 229 (2010) 594–625 599
FS ¼ �ðT1
11ðð1� ~gÞð/s � /1Þ þ ~gð/m � /wÞÞ þ T1

12ð/m � /sÞÞ

¼ �ðT2
11ðð1� ~gÞð/2 � /sÞ þ ~gð/e � /mÞÞ þ T2

12ð/m � /sÞÞ ð12Þ
where for the left hand side flux, approximations of /~n and /~g are given by Eq. (6) and FS is a function of ~g, FS ¼ FSð~gÞ and the
geometric tensor coefficients are calculated at S where the position is defined by the quadrature point ~g, where
rjS ¼ ð1� ~gÞrs þ ~grm.

The fourth equation is defined at a point W between w and m (again never coinciding with m) with
FW ¼ � T1
12ð/m � /wÞ þ T1

22ðð1� ~nÞð/w � /1Þ þ ~nð/m � /sÞÞ
� �

¼ � T4
12ð/m � /wÞ þ T4

22ðð1� ~nÞð/4 � /wÞ þ ~nð/n � /mÞÞ
� �

ð13Þ
where for the left hand side flux (with respect to edge ðm;wÞ), approximations of /~n and /~g are again given by Eq. (6) and
now FW is a function of ~n; FW ¼ FWð~nÞ and the tensor coefficients are calculated at W where the position is defined by the
quadrature point ~n; rjW ¼ ð1� ~nÞrw þ ~nrm.

Analogous subcell approximations are constructed for each of the flux continuity conditions in Eq. (11), leading to
FNð~gÞ; FSð~gÞ; FEð~nÞ; FW ð~nÞ which are not necessarily symmetrically located c.f. Fig. 2(b), where ~n–~g creating double-families.
The actual choice of quadrature points ð~n; ~gÞ are discussed in Section 6.

Referring now to the discrete auxiliary divergence approximation, the 5th equation of Eq. (11), the auxiliary control-vol-
ume (perimeter shown dot-dashed) centred on the auxiliary node m of Fig. 2(c) and (d) is comprised of 4 sub-subcells one in
each subcell of the primal cell, where permeability is piecewise constant, so the auxiliary divergence approximation is based
on a CVFE formulation. The auxiliary fluxes are also parameterized with respect to 0 6 p < 1 defined over the auxiliary con-
trol-volume subfaces. The auxiliary control-volume can lie in or on the primal cell, the size is to be chosen, and parameter-
ized by the variable 1 P c > 0, where c ¼ 1 corresponds to an auxiliary control-volume that overlays the primal cell and as
c ! 0 the auxiliary control-volume tends to zero. A small volume maximises primal flux quadrature range c.f. Section 4
below.

The primal control-volume and auxiliary control-volume fluxes are indicated in Fig. 2(b) and (d), respectively, with solid
arrows for primal fluxes and hollow arrows for auxiliary fluxes. The auxiliary fluxes are defined with tensors T and have
super-fixes indicating the auxiliary subcell and compass suffices indicating position relative to the primal subcell in which
they are defined. For example referring again to subcell 1 (corners 1; s;m;w) Fig. 2(d), the auxiliary control-volume flux F1

N is
defined on the top left sub-subcell face by
F1
N ¼ cð�T1

11ðcð1� pÞð/s � /1Þ þ ð1� cð1� pÞÞð/m � /wÞÞ � T1
12ðcð/w � /1Þ þ ð1� cÞð/m � /sÞÞÞ ð14Þ
which is a function of the auxiliary quadrature and control-volume size parameters p and c respectively. In the general case
this formulation leads to a multiple family of schemes which are functions of the primary flux quadrature parameters ~n; ~g,
the auxiliary control-volume flux parameter p and auxiliary control-volume size parameter c.

The degrees of freedom of the five equation system Eq. (11) are the five interface pressures Uf ¼ ð/n;/s;/e;/w;/mÞ
T and

the four cell-vertex pressures Uv ¼ ð/1;/2;/3;/4Þ
T . The system of equations is rearranged as
F ¼ A5�5
L Uf þ B5�4

L Uv ¼ A5�5
R Uf þ B5�4

R Uv ð15Þ
where A5�5
L ;A5�5

R are 5� 5 matrices and B5�4
L ;B5�4

R 5� 4 matrices. Since we only require the four fluxes, we let A4�5
L denote the

first four rows of matrix A5�5
L and B4�4

L denote the first four rows of matrix B5�4
L .

Then the continuous fluxes of the families of FPS schemes are written as:
F ¼ A4�5
L ðA5�5

L � A5�5
R Þ�1ðB5�4

R � B5�4
L Þ þ B4�4

L

� �
Uv ð16Þ
where F ¼ ðFN; FS; FE; FWÞT . Fluxes are then assembled from respective grid cells to form control-volume face flux approxima-
tions. This formulation applies to a general quadrilateral cell belonging to any grid type. Using flux consistency [28], the
fluxes of Eq. (16) can be written as AF ¼ �DUv denoting a linear combination of local cell-edge pressure differences, where
A is the local flux matrix.

For a structured grid the net flux across the right-hand face of control-volume i; j (local node 1) is given by
Fiþ1=2;j ¼ FSiþ1=2;jþ1=2

þ FNiþ1=2;j�1=2
, which depends on the six vertices 8, 9, 1, 2, 3, 4 and the net flux across the upper face of con-

trol-volume i; j is given by Fi;jþ1=2 ¼ FEi�1=2;jþ1=2 þ FWiþ1=2;jþ1=2 which depends on the six vertices 6, 1, 2, 3, 4, 5 and where
iþ 1=2; jþ 1=2 are integer coordinates of the top right-hand grid cell, local nodes 1–4 Fig. 1(b). The discrete divergence
Fiþ1=2;j � Fi�1=2;j þ Fi;jþ1=2 � Fi;j�1=2 ¼ Mi;j
is then formed over each control-volume via cell-wise assembly.
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3.2. FPS schemes on triangle grids

The generalisation of the cell-vertex method to triangles follows a similar procedure to the above method for quadrilat-
erals. Primary pressure variables are located at the primal grid cell-vertices as for the quadrilateral case above, with primary
variable pressures locally numbered with respect to the triangle vertices viz Uv ¼ ð/1;/2;/3Þ

T with suffix v for vertices, as
indicated in Fig. 4. There are now three subcells meeting inside the triangle, formed by joining triangle edge mid-points n; s; e
with the triangle centre or circumcentre m, Fig. 4(a). Each subcell belongs to a unique vertex of the triangle. A control-vol-
ume surrounding a given vertex is comprised of all subcells attached to the vertex Fig. 4(b). Rock properties are assigned to
the control-volumes over which permeability is then piecewise constant, shown shaded in Fig. 4(c). The local flux continuity
conditions are again naturally imposed via a primal cell-wise formulation. Continuous interface pressures are introduced at
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the triangle edge mid-points and centre respectively, where the subcells meet. Thus the vector of auxiliary interface pres-
sures is defined by Uf ¼ ð/n;/s;/e;/mÞ

T . A local bilinear variation in pressure is introduced over each subcell as before. Adja-
cent interior subcell faces share the same conforming linear pressure variation on each common subface, ensuring full
interface pressure continuity by construction. One flux continuity condition is imposed on each of the three subcell faces
(dashed subfaces Fig. 4(a) to determine /n;/s;/e, where a distinct quadrature can be employed on each subface, leading
to double-family fluxes F ¼ ðFN; FS; FEÞT . Zero divergence is applied over a small auxiliary control-volume (dot-dashed) sur-
rounding the triangle centre of gravity Fig. 4(d) and (e), to determine /m, providing a total of four equations for the four aux-
iliary interface pressures Uf . The resulting system of equations are given by
FN ¼ �ðT11/~n þ T12/~gÞj
3
N ¼ �ðT12/~n þ T22/~gÞj

1
N;

FS ¼ �ðT11/~n þ T12/~gÞj
1
S ¼ �ðT11/~n þ T12/~gÞj

2
S ;

FE ¼ �ðT12/~n þ T22/~gÞj
2
E ¼ �ðT12/~n þ T22/~gÞj

3
E ;

�
P
@XAUX

ðKr/Þ � n̂Ds ¼ 0

ð17Þ
which is linear in Uf and Uv , and represents the triangle grid equivalent of Eq. (11). Again discrete approximations of the
general-tensor coefficients result from normal Darcy-flux resolution over the interior subcell faces. Approximation of Eq.
(17) and subsequent elimination of the auxiliary pressures follows an analogous procedure to that of Eqs. (12)–(16), where
now we obtain
F ¼ A3�4
L ðA4�4

L � A4�4
R Þ�1ðB4�3

R � B4�3
L Þ þ B3�3

L

� �
Uv ð18Þ
Primal divergence is then approximated by assembly of the continuous control-volume subcell fluxes over each polygon
surrounding each vertex. For example flux FS is added to control-volume 1 and subtracted from adjacent control-volume 2
for any quadrature point between s and m but not at m, Fig. 4. Local conservation follows immediately as the two flux
contributions cancel in the summation of the divergence contributions from subface s�m to vertices 1 and 2 respectively.
Finally we note that as for quadrilateral cell fluxes, triangle cell fluxes of Eq. (18) can also be written as a linear combination
of cell-edge differences in pressure by using the flux consistency condition [28].
4. Double-family relationship between FPS and CVFE for a spatially constant tensor

Flux continuity ensures local conservation, however the converse is not necessarily true, for example the CVFE family is
locally conservative [19], but key flux continuity is lacking across the interior interfaces where permeability can be discon-
tinuous. Thus standard CVFE methods are not appropriate for modeling flow in porous media.

However, for a spatially constant tensor field the quadrilateral flux-continuous schemes are mapped onto the more trans-
parent control-volume finite element CVFE nine-point framework. This relationship aids understanding of TPS and FPS dis-
cretization effects, see [1,22] for the single family FPS analysis. Here 0 6 n;g 6 1 define master element coordinates over the
primal cell if cell-vertex, or dual-cell if cell centred. Bilinear expansions of /; r in n;g are used in defining the CVFE double-
family over the primal cell or the dual-cell, Fig. 1(b), where e.g.
/ ¼ ð1� nÞð1� gÞ/1 þ nð1� gÞ/2 þ ng/3 þ ð1� nÞg/4 ð19Þ
Derivatives of the bilinear expansions of /; r in n;g are then used in defining the CVFE double-family fluxes over the primal
cell (dual-cell if cell-centred), Fig. 1(b). The resulting fluxes at S and W contributing to control-volume 1 are given by
FS ¼ � 1
2 ðT11ðð/2 � /1Þð1� gÞ þ ð/3 � /4ÞgÞ þ 1

2 T12ðð/4 � /1Þ þ ð/3 � /2ÞÞÞ
FW ¼ � 1

2 ð12 T12ðð/2 � /1Þ þ ð/3 � /4ÞÞ þ T22ðð/4 � /1Þð1� nÞ þ ð/3 � /2ÞnÞÞ
ð20Þ
where 0 6 n;g < 1=2 Fig. 3(a), ensuring that flux approximation remains convex over the control-volume and that the quad-
rature points do not both coincide with the decoupled point n ¼ g ¼ 1=2 at the cell centre (discussed later). Crucially here
these double-family schemes also permit quadratures with n–g. The nine-point scheme coefficients for the case of a spatially
constant full-tensor are given below.

Note 0 6 n;g < 1=2 for fluxes defined in their respective control-volumes. The CVFE double-family framework is a natural
extension of the single family [19] and is quite transparent and includes all possible double-parameter, consistent, locally
conservative, nine-point diagonal and full-tensor schemes, for spatially constant tensor coefficients. By construction c.f.
Eqs. (19) and (20), for spatially constant tensor coefficients the CVFE fluxes and schemes are exact for linear and bilinear
solutions of the respective pressure equations defined in Appendix A.

Symmetry of the double-family for constant coefficients is verified by inspection of Table 1. The CVFE family is symmetric
positive definite [22,19] and the double-family is SPD, by a similar proof. From the mapping below it follows that the FPS
families of schemes are therefore SPD for spatially constant elliptic tensor coefficients for 0 6 n;g < 1=2.
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4.1. Full-pressure support FPS and CVFE mapping

For a spatially constant tensor the FPS schemes can also be expressed in the form of Table 1 with n;g in the CVFE scheme
defined by
Table 1
CVFE d

Integ

i,j
i + 1
i + 1

i,j + 1
i � 1

i�1,j
i � 1

i,j �
i + 1
n ¼ 1
2 ð~nþ tð~n; ~gÞERÞ

g ¼ 1
2 ð~gþ tð~n; ~gÞERÞ

ð21Þ
where
tð~n; ~gÞ ¼ cð2� ~n� ~gÞðT11 þ T22Þ
ð1þ cÞðð1� ~gÞT11 þ ð1� ~nÞT22Þ þ cðT11 þ T22ÞÞ

ð22Þ
where R ¼ 4T11T22

ðT11þT22Þ2
(harmonic/arithmetic means), and E ¼ T122

T11T22
(ellipticity measure) where R; E 6 1, and 0 6 g < 1=2, with

maximum quadrature bounded above by 1/2. The lower bounds of n;g only tend to zero if the auxiliary control-volume size
tends to zero (by Eq. (22)), which occurs in the limit with c! 0, and from Eq. (21) it follows that n ¼ ~n=2;g ¼ ~g=2 and the FPS
flux integration intervals map onto the CVFE intervals with 0 6 n;g < 1

2, Fig. 3(a). Therefore an M-matrix analysis of the CVFE
double-family with coefficients in Table 1 is applicable to the FPS double-family.

4.2. Triangular Pressure Support TPS and CVFE Mapping

The original pointwise continuous schemes with triangle pressure support (TPS) also extend to a double-family with
nine-point coefficients given by Table 1 and corresponding mapping
n ¼ ðpEþ q� pqÞ
2ðpþ q� pqÞ ; g ¼ ðpþ qE� pqÞ

2ðpþ q� pqÞ ð23Þ
where E is defined above and 0 < p; q 6 1 are local quadrature coordinates measured from the cell centre to the cell-face
mid-points Fig. 3(b), [1]. This shows that an M-matrix analysis of the CVFE double-family applies to the TPS double-family.
However as for the original single-parameter family, for high full-tensor anisotropy ratio where E! 1, from Eq. (23) it fol-
lows that n! 1=2 and g! 1=2 leading to a decoupled formulation, discussed further below.

5. Positivity, M-matrix and discrete maximum principle

The term monotonicity is too strong when describing multi-dimensional solutions, as the local solution can often have a
saddle point in structure [22], where as a result positivity is introduced. We recall these definitions below.

5.1. Local saddle point nature of elliptic solutions

Consider a locally constant tensor field away from any source/sink, where the pressure equation reduces to
�eK 11/~x~x � eK 22/~y~y ¼ 0 with respect to principal axes ð~x; ~yÞ, so that /~x~x ¼ �eK 22/~y~y=

eK 11, from which it follows that
/~x~x/~y~y < 0 leading to the condition for a saddle point with /2

~x~y P /~x~x/~y~y. Consequently we use the term positive as defined
below for describing the property of a scheme that ensures discrete solutions are computed that are free of spurious oscil-
lations. This name has been taken from the hyperbolic scheme literature [30] and the definition below has a direct analogy.

5.2. Definition of a positive elliptic scheme

Well known conditions for a matrix A with elements ai;j to be an M-matrix are that the diagonal coefficients be positive
ai;i > 0 and the matrix be strictly diagonally dominant or weakly diagonally dominant with strict inequality for at least one
row, A must also be irreducible and ai;j 6 0; i–j. For the ith equation it follows that away from a source or sink
ouble-family coefficients for constant tensor field.

er coordinates Coefficients Full-tensor

M11 2ðT11 þ T22Þ � 2ðgT11 þ nT22Þ
,j M12 �T11 þ ðgT11 þ nT22Þ
,j + 1 M13 � 1

2 ðgT11 þ nT22Þ � 1
2 T12

M14 �T22 þ ðgT11 þ nT22Þ
,j + 1 M15 � 1

2 ðgT11 þ nT22Þ þ 1
2 T12

M16 �T11 þ ðgT11 þ nT22Þ
,j�1 M17 � 1

2 ðgT11 þ nT22Þ � 1
2 T12

1 M18 �T22 þ ðgT11 þ nT22Þ
,j � 1 M19 � 1

2 ðgT11 þ nT22Þ þ 1
2 T12
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/i ¼ �
1
aii

X
jði–jÞ

aij/j ð24Þ
If A is an M-matrix, by consistency for a constant potential field it follows from Eq. (24) that each non-specified /i is a convex
average of the surrounding nodes or neighbours, belonging to the discretization support centred on node i. Thus each /i is
bounded between the maximum and minimum of the neighbours with
/imin 6 /i 6 /imax ð25Þ
where /imax;/imin are the respective maximum and minimum values of pressure at the neighbouring nodes belonging to the
support at node i. This condition is consistent with the absence of spurious oscillations and defines a local discrete maximum
principle (DMP). Thus when A is an M-matrix Eq. (24) defines a positive scheme.
5.3. Quadrilateral M-matrix conditions and cell-wise analysis

An M-matrix analysis of FPS is conducted by considering cell-wise assembly of fluxes for the cell-vertex formulation and
dual-cell assembly of fluxes for the cell-centred formulation [1,19,22]. The following analysis relies on the assumption that
the tensor is piecewise constant over the grid cells for the cell-vertex formulation (and piecewise constant over the dual-cell
for the cell-centred formulation). Assumption of a piecewise constant tensor per grid cell is standard for CVFE and thus the
cell-wise M-matrix analysis below applies directly to the discrete CVFE method. For a variable or heterogeneous permeabil-
ity field where for FPS, permeability changes between the respective control-volume subcells belonging to the grid cell, this
assumption then applies to the locally upscaled (homogenized) general tensor over the grid cell, so that the resulting con-
ditions hold with respect to the resulting local cell average tensor. However, the general FPS flux for discontinuous coeffi-
cients can also be written as a linear combination of cell-edge differences (by using flux consistency [28]) and a similar
analysis treating the non-symmetric case applies.

Here we perform a primal cell-wise M-matrix test for the cell-vertex double-family, where e.g. for local node 1, the local
net flux contribution to the global matrix is given by FS þ FW Fig. 2(b).

Using Eq. (20) and gathering coefficients of each /j; j ¼ 1; . . . ;4 the net flux is written as
FS þ FW ¼
1
2
ð/1ðT11ð1� gÞ þ T22ð1� nÞ þ T12Þ � /2ðT11ð1� gÞ � T22nÞ � /3ðT11gþ T22nþ T12Þ � /4ðT22ð1� nÞ � T11gÞÞ

ð26Þ
Next the conditions for diagonal dominance with non-positive off diagonals are tested, where the diagonal corresponds
to local node 1. First conditions for non-positive off-diagonal coefficients are derived. The /3 coefficient is non-positive
if
jT12j 6 ðT11gþ T22nÞ ð27Þ
and the coefficients of /2 and /4 are non-positive if
ðgT11 þ nT22Þ 6 minðT11; T22Þ ð28Þ
Thus taking the inequalities together we obtain
jT12j 6 ðgT11 þ nT22Þ 6 minðT11; T22Þ ð29Þ
from which it follows that diagonal dominance is obtained with the coefficient of /1 positive and equal to the sum of abso-
lute values of the off-diagonal coefficients, with strict inequality obtained when a Dirichlet condition is imposed. Here n;g
can be defined independently leading to a wide range of double-family flux quadrature points. We note that M-matrix con-
ditions for the single family of schemes are recovered for n ¼ g in Eq. (29) [1].

The double-family nine-node M-matrix conditions of Eq. (29) can also be verified by inspection of Table 1. One of the
essential conditions here is that
jT12j 6 minðT11; T22Þ ð30Þ
which is only sufficient for ellipticity T2
12 6 T11T22

� �
as for single family schemes [22]. Thus elliptic tensors with

jT12j > minðT11; T22Þ violate the M-Matrix criteria of Eq. (29) and expose the upper M-Matrix limit.
These conditions now establish the following Conditional M-matrix theorem: Any double-parameter family of consistent

locally conservative schemes on or within the nine-point stencil applied to a the pressure equation with a spatially constant
full-tensor field can only provide a conditional M-matrix subject to Eq. (29). Note: FPS fluxes are exact for piecewise linear
and bilinear fields since the pressure basis functions are piecewise bilinear, c.f. Eq. (5). In these cases FPS schemes are exact
as defined in Appendix A. For a spatially constant full-tensor field the FPS schemes then reduce to the schemes in the the-
orem, which are exact for linear and bilinear fields as discussed earlier c.f. Section 4.
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6. Anisotropic quadrature and optimal support

In this section two particular approaches are proposed for designing schemes using quadrature rules that will yield solu-
tions with improved resolution for full-tensor fields. The first involves optimal support schemes, while the second involves
extreme anisotropic quadrature. Schemes for large grid aspect ratio and/or large anisotropy ratio with small or zero off-diag-
onal coefficients are also presented.

First we develop a family of optimal support schemes. If we choose quadrature points n;g such that
Fig. 5.
(c) posi

Table 2
Optima

Integ

i,j
i + 1
i + 1
i,j + 1
i � 1
i � 1
i � 1
i,j �
i + 1
gT11 þ nT22 ¼ jT12j ð31Þ
then an M-matrix is obtained subject to the sufficient condition for ellipticity of Eq. (30), giving the maximum upper limit on
the tensor cross-term. Thus Eq. (31) generalises the result of [1] where n ¼ g ¼ jT12j=ðT11 þ T22Þ. Choosing FPS (or equivalent
CVFE) quadrature points defined via Eq. (31), it follows from Table 1 that if the local tensor field has a positive cross-term
T12 > 0 for each cell the 9-point scheme reduces to a 7-point (triangle) scheme with diagonally upward positive-angle sup-
port as indicated in Fig. 5(a), by Table 1 M15 ¼ M19 ¼ 0 while the other off-diagonals are non-positive subject to Eq. (30). Con-
versely if T12 < 0 a diagonally downward negative-angle triangle support is obtained Fig. 5(b), in this case M13 ¼ M17 ¼ 0. We
note that Eq. (30) is consistent with the triangle grid scheme M-matrix conditions presented in the next section. We shall
refer to Eq. (31) as the double-family optimal support condition. We also note that this leads to the upper M-matrix limit
for the cross coefficient jT12j. However the condition of Eq. (31) gives a family of optimal support schemes independently
of the M-matrix conditions. In general, the choice of quadrature defined by Eq. (31) for double-families leading to (optimal
support) yields a family of schemes that will select a variable support depending upon the local tensor and orientation (sign
of the cross-terms). These observations lead to a generalisation of the previous FPS formulation [22].

Optimal support relies on exact algebraic cancelation for reduced support, c.f. Table 2. If coefficients vary over subcells,
while exact algebraic cancelation is unlikely, optimal support can still be achieved by anisotropy favoring triangulation [4]
(where the sign of triangulation angle equals the sign of dominant principal direction angle), or by special case construction
[23] provided the local principal directions are well defined. However, when local principal directions are varying the dis-
cretization support must adapt according to the change in principal direction. This is demonstrated in [4], where the trian-
gulation is adapted according to principal anisotropy angle. If the principal axes orientation is positive relative to a
quadrilateral cell, the cell is diagonally triangulated with positive angle, conversely a negative principal axes orientation
leads to a negative-angle diagonal triangulation, which we term anisotropy favoring triangulation. Such a triangulation is
presented below for FPS (triangle grid schemes) and compared directly with the quadrilateral schemes using anisotropic
quadratures. For a general heterogeneous medium, no matter how the scheme is constructed e.g. [4,22] where problems
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er coordinates Coefficients Full-tensor T12 > 0 Full-tensor T12 < 0

M11 ð2ðT11 þ T22Þ � 2jT12jÞ ð2ðT11 þ T22Þ � 2jT12jÞ
,j M12 �T11 þ jT12j �T11 þ jT12j
,j + 1 M13 �jT12j 0

M14 �T22 þ jT12j �T22 þ jT12j
,j + 1 M15 0 �jT12 j
,j M16 �T11 þ jT12j �T11 þ jT12j
,j � 1 M17 �jT12j 0
1 M18 �T22 þ jT12j �T22 þ jT12j
,j � 1 M19 0 �jT12 j
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involving variation in principal direction have been considered, or [23], determination of actual optimal support depends on
an estimate of the tensor orientation over the cell (or dual-cell if cell-centred) where subcell fluxes are determined. In this
work for a spatially varying tensor, the local tensor used for calculating the quadrature is determined by performing local
upscaling with periodic boundary conditions over the primal cell [33] (or over the dual-cell if cell-centred). Note that if
the optimal scheme is defined using Eq. (31) then the local optimal quadrature point is determined via the cell-wise upscaled
general tensor, while the resulting scheme is applied to the original fine scale problem.

6.1. Anisotropic quadrature rules for optimal support

M-matrices are obtained if Eq. (29) is satisfied. If cross-terms vanish the quadrature Eq. (31) defaults to zero yielding the
basic diagonal-tensor 5-point operator. Other M-matrix schemes that adapt quadrature according to the local tensor varia-
tion can also be defined provided other values of n;g can be found that lie in the range defined by Eq. (29). There are multiple
advantages to the families of schemes. Certain quadrature points improve M-matrix bounds as discussed above, while others
can improve accuracy. For example the single family with n ¼ g ¼ 1=6 leads to a sixth order accurate scheme in the case of
Laplace’s equation, while n ¼ g ¼ 1=4 defines the default finite-volume scheme and n ¼ g ¼ 1=3 defines the standard Galer-
kin method, [32]. Further important advantages are identified below for strongly anisotropic tensors.

We now consider highly anisotropic full-tensor fields where the M-matrix conditions are violated with
jT12j > minðT11; T22Þ. The relationship between FPS and CVFE presented above shows that FPS is applicable for the whole
CVFE quadrature range, while the pointwise continuous TPS schemes have limited quadrature range particularly for strong
full-tensor anisotropy where they are not applicable, see the section on decoupling below.

We note that a family of optimal FPS schemes are defined via Eq. (31). As discussed above, for a spatially variable perme-
ability field the grid cell tensor coefficients used for definition of the quadrature rule are local effective tensors and thus the
analysis is expressed in terms of the resulting cell average tensors. We will denote optimal support (OS) quadrature points
defining families of schemes via Eq. (31) by n ¼ nOS;g ¼ gOS. We may either choose a quadrature point with n ¼ nQ such as a
Gauss point and determine gOS through Eq. (31), or choose g ¼ gQ and determine nOS through Eq. (31).

While the single-parameter family of FPS schemes will always remain within the quadrature range 0 6 g < 1=2 (by ellip-
ticity) the double-family requires further consideration. Some specific examples that satisfy Eq. (31) are e.g.
ðiÞn ¼ jT12j=2T22;g ¼ jT12j=2T11, (ii) n ¼ jT12j=T22;g ¼ 0, or (iii) n ¼ 0;g ¼ jT12j=T11. If we suppose that T11 ¼ maxðT11; T22Þ,
then T22 ¼ minðT11; T22Þ, and it follows that in case (i) n ¼ jT12j=2T22 > 1=2 (non valid quadrature) and
g ¼ jT12j=2T11 < 1=2. In case (ii) n ¼ jT12j=T22 > 1 (non valid quadrature). Case (iii) is possible provided jT12j=T11 < 1=2.

Thus the above considerations show that the optimal support quadrature parameter determined by Eq. (31) is that which
multiplies the maxðT11; T22Þ, while the specified value multiplies the minðT11; T22Þ, i.e. if T11 ¼ maxðT11; T22Þ then specify nQ

and determine gOS. Similarly if T22 ¼ maxðT11; T22Þ then specify gQ and determine nOS. In the first case it follows from Eq.
(31) that
gOS ¼ ðjT12j � nQ T22Þ=T11 ð32Þ
which corresponds to quadratures nQ ;gOS with nQ specified and gOS determined by
gOS ¼ ðjT12j � nQ minðT11; T22ÞÞ=maxðT11; T22Þ ð33Þ
In this way the double-family is determined according to field anisotropy. The advantages here are that an optimal or
approximately optimal scheme can be determined using a specified quadrature point such as a Gauss point that is away from
the singular point for the first variable (nQ in the above case), while the optimal quadrature point gOS remains in the stable
region. The effect of different quadrature values is presented in the results section.

6.2. Extreme anisotropic quadrature

Here we consider alternative anisotropic quadratures to that of the optimal support point, which are also motivated from
the above observations. We define extreme anisotropic quadrature where for T11 ¼ maxðT11; T22Þwe set n ¼ 0;g! 1=2 and for
T22 ¼ maxðT11; T22Þ set n! 1=2;g ¼ 0, the flux locations are illustrated in Fig. 6. Setting the quadrature multiplying the min-
imum diagonal to zero and maximising the second quadrature multiplying the maximum diagonal exploits the anisotropic
flexibility of the method, while ensuring that the decoupled neighborhood where both n! 1=2;g! 1=2 is avoided. This of-
fers an alternative quadrature that only requires maxðT11; T22Þ, where effective cell average properties are used if permeabil-
ity has a spatial variation. Thus extreme anisotropic quadrature only has a weak dependence on the tensor coefficients, while
the optimal support quadrature of Eq. (33) requires the actual tensor coefficients. An important advantage of extreme quad-
rature compared to any optimal support scheme is the independence from the angle of anisotropy which can vary in the
general heterogeneous case. An optimal support scheme thus depends on a more sensitive upscaled general-tensor estimate
in the general case, as the off-diagonal coefficients are used in determining the local direction of support, while extreme
quadrature only needs to estimate which upscaled diagonal is the largest, i.e. if T22=T11 is greater or less than one, the actual
coefficients are not used. The results show that extreme quadrature yields solutions with resolution that is at least compa-
rable with that of optimal support quadrature.
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A further option is that extreme quadrature be employed locally in place of optimal support if (for a given nQ ) gOS > 1=2,
ensuring that the quadrature will remain in range.

6.3. Anisotropy and grid aspect ratio quadrature rules

Returning to the M-matrix bounds, another possibility suggested by Eq. (29) is to let
gT11 þ nT22 ¼ minðT11; T22Þ ð34Þ
This results in H or I reduced support schemes as in the case of the single family, and for strong full-tensor problems these
schemes have the effect of spreading the solution [22]. For small or zero off-diagonal-tensor coefficients where
jT12j 6 minðT11; T22Þ, schemes motivated by Eq. (34) become important. For the single family where n ¼ g, it follows from
Eq. (34) that g ¼ minðT11; T22Þ=ðT11 þ T22Þ and g is effectively bounded by the minimum to maximum ratio of diagonal coef-
ficients. Referring to Eq. (2) it follows that this ratio depends on both the permeability anisotropy ratio and local grid aspect
ratio, which is seen immediately if e.g. xg ¼ yn ¼ K12 ¼ 0, then from Eq. (2) T11 ¼ K11yg=xn and T22 ¼ K22xn=yg. As the ratio
minðT11; T22Þ=maxðT11; T22Þ decreases (e.g. if K11 � K22 and large grid aspect ratio prevails with ðyg=xnÞ2 � 1) then g! 0,
and the scheme reduces to the standard five point operator. The flexibility offered by the double-family is again illustrated.
Let us assume that T22 ¼ minðT11; T22Þ, then for the double-family one possibility is to set g ¼ 0, then a family of H M-matrix
schemes are defined by 0 6 n < 1=2.
7. Decoupled approximation

The quadrature point n ¼ g ¼ 1=2 is a decoupled point for the above CVFE, FPS and earlier TPS approximations, since the
resulting discretization permits a checker board solution that is strongly oscillatory and decoupled, [22] varying with
/i;j ¼ þ1 together with diagonally connected neighbours where /i�1;j�1 ¼ þ1, while /i�1;j ¼ �1 and /i;j�1 ¼ �1. This is veri-
fied by substituting n ¼ g ¼ 1=2 in Table 1 and testing the resulting operator on the checker board solution. For highly aniso-
tropic full-tensors both the TPS single and TPS double-families are contained in the small end-interval c.f. Eq. (23), where
ðn;gÞ ! ð1=2;1=2Þ for highly anisotropic full-tensors, which therefore leads to decoupling [22]. (The optimal quadrature
point lies outside the TPS quadrature range when jT12j > 2T11T22=ðT11 þ T22Þ [22] which holds in the test cases below).

7.1. Flux filtering of decoupled modes

We note that the constant tensor-coefficient flux components of Eq. (20) also permit such a checker board solution mode
with n ¼ g ¼ 1=2, then the fluxes take the form
FS ¼ � 1
2 ðT11 ð/2 � /1Þ 1

2þ ð/3 � /4Þ 1
2

� �
þ 1

2 T12ðð/4 � /1Þ þ ð/3 � /2ÞÞÞ
FW ¼ � 1

2 ð12 T12ðð/2 � /1Þ þ ð/3 � /4ÞÞ þ T22 ð/4 � /1Þ 1
2þ ð/3 � /2Þ 1

2

� �� ð35Þ
and with locally numbered / values corresponding to the checker board solution viz, /1 ¼ 1;/2 ¼ �1;/3 ¼ 1;/4 ¼ �1, it fol-
lows from Eq. (35) that
FS ¼ 0; FW ¼ 0:
The fluxes FN; FE also vanish under these conditions. This result indicates that the flux and therefore velocity field may not
see the decoupled modes of a pressure field and they may in effect, be filtered from the flow solution. This has been observed
in some two-phase flow results (results section case 3) obtained using the decoupled TPS pressure field solution, where the
resulting saturation fields appear to be consistent with physical flow and appear free of spurious oscillations.
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There are some important points to note here. First that the flow field results provide further evidence that the TPS pres-
sure field has decoupled modes as discussed above. Second, while this may appear to suggest that decoupled fields may be
useable for flow results, note that the TPS analysis leads to values of n;g in the neighbourhood of n ¼ g ¼ 1=2 for constant
full-tensor fields at high anisotropy, but not necessarily at the exact point of 1/2. Consequently, we cannot be sure that the
modes will completely cancel from the velocity field, particularly for variable coefficients and lower anisotropy ratios. Con-
sequently such flow results cannot be regarded as reliable. Moreover experiments indicate that TPS based flow calculations
can still lead to instabilities. Also note that the above observations are for strictly incompressible flow. Decoupling can be
expected to have a further detrimental effect on velocity if flow is compressible, and of course for multi-phase flow a decou-
pled pressure field will be useless, particularly if phase changes are involved.

However, as discussed above, the FPS double-family approximation can be applied to all elliptic tensors and permit aniso-
tropic quadratures that avoid the TPS decoupled zone while ensuring improved solution resolution.

7.2. Corollary: a monotone discretization matrix avoids decoupling

An obvious feature of a decoupled solution are the modes of oscillation between positive and negative values. Thus we
may conclude that while a scheme with a monotone discretization matrix may not be able to guarantee that resulting
numerical solutions are free of spurious oscillations, the monotone property is sufficient to prevent decoupling, since a
monotone matrix ensures that any problem with non-negative boundary data yields a positive solution. This observation
motivates the idea of constructing a monotone matrix scheme for high full-tensor anisotropy ratios. This property can be
built into the approximation via a non-linear construction where scheme coefficients are functions of the solution as pre-
sented in [27,26]. The schemes presented here are linear with respect to the solution vector and while they are not monotone
for the test cases considered, they are quasi-positive as defined below and prove to be beneficial.

8. M-matrix conditions for triangle grid schemes

A cell-wise M-matrix analysis is performed for the triangle grid scheme. Discrete cell-vertex fluxes on a triangle with inte-
rior discontinuous coefficients can always be expressed as a linear combination of edge differences as noted earlier, with
AF ¼ �DUv [28]. As a result, discrete flux components with respect to vertex 1 Fig. 4(a) are written as
Fi ¼ �ðTi1ð/2 � /1Þ þ Ti2ð/3 � /1ÞÞ ð36Þ
for i ¼ 1;2 where Tij are local control-volume tensor coefficients derived from flux continuity conditions. The Tij coefficients
are functions of local subcell permeability, geometry and quadrature location. The net flux contribution for vertex 1 from the
two triangle subcell faces S and N Fig. 4(a), is then
F ¼ �ððT11 þ T21Þð/2 � /1Þ þ ðT12 þ T22Þð/3 � /1ÞÞ ð37Þ
Gathering coefficients of the diagonal pressure /1 and off-diagonal pressures /2;/3 respectively, it follows that cell-wise M-
matrix conditions with positive diagonal M11 and negative off-diagonals M1j; j–1 will be obtained if
jT21j < T11; jT12j < T22 ð38Þ
Cell-wise diagonal dominance also follows with M11 ¼ jM12j þ jM13j with strict inequality for at least one row due to the
essential Dirichlet condition. Symmetry does not hold in physical space for an arbitrary triangle and permeability tensor.
However, if special cases occur where symmetry of the general tensor is obtained it follows directly from Eq. (38) that
jT12j < minðT11; T22Þ ð39Þ
This key result of [29], is consistent with the quadrilateral optimal support M-matrix analysis c.f. Eq. (30) above.

9. Quasi-positive QM-matrices

In this section we introduce the notion of quasi-positivity in reference to matrices that suffer a small violation of the
M-matrix property.

Definition: We define a Quasi-M-matrix or QM-matrix as a matrix with only two positive off-diagonal coefficients per row that
violate the M-matrix conditions. [22].

This definition is motivated by the spatially constant tensor coefficient case c.f. Table 1.0. Inspection of Table 1.0 reveals
that the matrix coefficients are symmetric and therefore the minimum number of positive off-diagonal coefficients violating
the M-matrix conditions is two.

While the general tensor will vary according to the local permeability and grid geometry and lead naturally to local var-
iation in the matrix coefficients across the field, the constant coefficient case still provides much insight into the behaviour
these schemes. M-matrix limits have been presented above, and the first example presented below (see results section),
illustrating the occurrence of problematic spurious oscillations when using TPS, involves a spatially constant full-tensor field
where the M-matrix limits are violated. Therefore in this case analysis of the spatially constant tensor coefficient case is
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exact and applies directly. We also emphasize that the discussion of beneficial quadrature points below is in reference to FPS
as TPS is not practical for such cases.

Here we consider elliptic tensors where the fundamental M-matrix (and monotone matrix) conditions are violated i.e.
when
jT12j > minðT11; T22Þ ð40Þ
Note by ellipticity we always have jT12j < maxðT11; T22Þ. In the case of Eq. (40), for a spatially constant tensor Table 1.0
reveals that there are certain intervals for which there is one unique offending positive off-diagonal coefficient, by matrix
symmetry c.f. Table 1.0, and consequently we need only consider the signs of M12;M13;M14;M15 to determine the QM-matrix
ranges. The range of positive coefficient intervals is presented in [22] for the single family and illustrated here in Fig. 7(a) for
the tensor of Eq. (42) used in test case 1 below, note that T11 ¼ maxðT11; T22Þ in this case, where the grid has unit aspect ratio.
The double-family permits an entire quadrature field of QM-matrices, illustrated in Fig. 7(b) for the same case. Note that
there is always at least one unique positive off-diagonal coefficient visible in Figs. 7(a) and (b) and 8(a) and (b) which verifies
violation of the M-matrix conditions. Comparing Fig. 7(a) for the single family and Fig. 7(b) for the range of double-families
shows that the double-families yield a wider class of QM-matrices than the single parameter family. For example set g ¼ 0 in
Table 1, then M15 > 0 for all 0 6 n < 1=2, is the only unique positive off-diagonal, while the others remain negative, Fig. 8(a),
which does not occur for a single family. The single family is also compared directly with the double-family by including the
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single family matrix coefficient M14ðg;gÞ in the double-family diagram of planes of unique matrix coefficients Fig. 7(b). The
M14ðg;gÞ coefficient is an extrapolated single family plane cutting through the double-family planes in Fig. 7(b), indicating
regions where double-families yield improved QM-matrices compared to a single family e.g. for 0 6 M14ðn;gÞ 6 M14ðg;gÞ.
From Eq. (31), the optimal support quadrature obtained via the double-family formulation yields a family of optimal support
schemes, and thus larger quadrature range compared to the single family which has a single optimal support quadrature
point.

Optimal support quadrature points are also optimal with respect to a QM-matrix, since i) they correspond to a point
where there is only one violating coefficient out of the four possible coefficients M12;M13;M14;M15, and ii) the violating coef-
ficient has a minimum positive value. The term minimum is used here with respect to the constraint that the coefficient is
M-matrix violating. For example, for the single family the unique coefficient M14 P 0 is minimised at gOS, Fig. 7(a). For the
double family a particular example is presented in Fig. 8(b) for the range ðn ¼ 0;0 6 g < 1=2Þ where gOS is indicated. In both
the single and double-family cases M14 is positive at gOS (c.f. Table 2) and is increasing to the right of gOS, while to the left of
gOS two coefficients (M14 and M15) are now positive, leading to a total of four actual positive matrix coefficients that violate
the M-matrix conditions. While 0 6 g 6 gHI (where gHI originates from Eq. (34)) defines a further range of QM-matrices
where only M15 > 0, these schemes do not correspond with the full-tensor anisotropy direction and are found to spread
the solution. This is also discussed in [22], where a study of the effects of the full range of quadrature for the single FPS family
is presented.
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While the optimal points yield well resolved fields, consistently good resolution is also obtained for distinctly different n
and g chosen according to extreme anisotropic quadrature discussed earlier. For example if T11 > T22 then g! 1=2 while
n! 0, the matrix coefficients in this case are illustrated in Fig. 8(b), where it is seen that the scheme still has a QM-matrix.
This strategy is unique to the double-family formulation in 2-D and has proven to be highly effective. While the leading
quadrature parameter is chosen according to strength of the dominant diagonal-tensor coefficient, crucially the values of
quadrature are otherwise independent of the tensor coefficients when chosen in this way. For a spatially varying tensor field
extreme quadrature provides an important advantage and simplification as discussed above due to being independent of
principal direction. All optimal support schemes including [4,22,23] and those presented above depend on an estimate of
the principal direction to define the scheme support.

9.1. QM-matrices on triangles

We note that (i) All cell-vertex triangle grid schemes share the same form of cell-wise M-matrix limit c.f. Eq. (39), as that
of the optimal schemes presented above. (ii) Results computed using triangular grids appear to be quite robust with respect
to different triangulations. The latter observations suggest that cell-vertex triangle grid schemes may possess QM-matrices
for general triangulations. Tests of the schemes on triangulations (where the schemes are not generally symmetric) for po-
sitive off-diagonal coefficients has thus far indicated that up to three coefficients per row can be positive. Since the above
QM-matrix definition has arisen from symmetric constant coefficient schemes where a strict minimum number of two po-
sitive off-diagonals is identified, this may be reconciled by revising the QM-matrix definition to allow for the general non-
symmetric case, e.g. permit up to three positive off-diagonal coefficients in the non-symmetric case.

However, triangulation of a quadrilateral grid that favors anisotropy conforms with the original definition and leads to
optimal QM-matrices for the FPS formulation where the same seven-point optimal support is obtained, with only two po-
sitive off-diagonal coefficients.
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Fig. 9. Cartesian grid, homogeneous: (a) TPS p = 1, q = 0.0001, (b) FPS optimal nGauss;gOS, (c) FPS extreme counter-anisotropy n ¼ 0:49;g ¼ 0, and (d) FPS
extreme favoring-anisotropy n ¼ 0;g ¼ 0:49.
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10. Numerical results

Comparisons are presented between the new full-pressure support FPS double-family formulation and the earlier point-
wise continuous TPS formulation for domains with full-tensors with strong cross-terms that violate the M-matrix conditions.
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Table 3
Discrete maximum principle test.

Scheme No. of violation Max Min

TPS p = q = 1 162 5.5240 �1.5937
FPS OS 20 1.9350 �0.0466
FPS (n = 0, g = 0.49) 20 2.0232 �0.0486
FPS (n = 0.49, g = 0) 4 1.3518 �0.0311
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As with the TPS family, the new FPS families of schemes are exact for piecewise linear test cases with jumps in full-tensor
permeability. However unlike TPS, the FPS flux formulation is also exact for piecewise bilinear test cases with jumps in full-
tensor permeability, consistent with the FPS subcell bilinear basis functions, c.f. Case 0 below and Appendix A. Convergence
behaviour has been found to match that of the TPS schemes for lower anisotropy ranges. The test cases presented demon-
strate the advantages of the FPS methods in terms of quasi-positivity.

10.1. Case 0: piecewise bilinear field

The following test involves Poisson’s equation (Appendix A). A piecewise bilinear field is defined over X ¼ ½0;1�X½0;1� and
involves a permeability field with a discontinuity at x ¼ 1

2, with the left and right-hand tensors are defined by KLðx; yÞ for
0 6 x 6 1=2 and KRðx; yÞ for 1=2 < x 6 1 respectively, where
y
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KLðx; yÞ ¼
1 0:5
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; KRðx; yÞ ¼
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ð41Þ
The exact pressure field is defined by
/ ¼
10þ 20xy; x 6 1

2

10:75� 1:5xþ 9yþ 2xy; x > 1
2

(

Dirichlet boundary conditions are imposed on all boundaries with data defined by the exact solution. The FPS schemes yield
the exact solution within six decimal places for all quadrature points tested. The TPS schemes have a convergence rate of
approximately unity for this problem.
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